Showing posts with label Gudang Rumus. Show all posts
Showing posts with label Gudang Rumus. Show all posts

Sunday, January 27, 2013

Aljabar

PEMBAGIAN ALJABAR

Kalian telah mempelajari penjumlahan, pengurangan, perkalian, dan perpangkatan pada bentuk aljabar. Sekarang kalian akan mempelajari pembagian pada bentuk aljabar.
Telah kalian pelajari bahwa jika suatu bilangan a dapat diubah menjadi a = p x q dengan a, p, q bilangan bulat maka p dan q disebut faktor-faktor dari a. Hal tersebut berlaku pula pada bentuk aljabar.

Perhatikan uraian berikut:

Pada bentuk aljabar di atas, 2, x2, y, dan z2 adalah faktor-faktor dari 2x2yz2, sedangkan x3, y2, dan z adalah faktor-faktor dari bentuk aljabar x3y2z. Faktor sekutu (faktor yang sama) dari 2x2yz2 dan x3y2z adalah x2, y, dan z, sehingga diperoleh

Berdasarkan uraian di atas dapat kita simpulkan bahwa jika dua bentuk aljabar memiliki faktor sekutu yang sama maka hasil bagi kedua bentuk aljabar tersebut dapat ditulis dalam bentuk yang lebih sederhana. Dengan demikian, pada operasi pembagian bentuk aljabar kalian harus menentukan terlebih dahulu faktor sekutu kedua bentuk aljabar tersebut, kemudian baru dilakukan pembagian.

sumber :  http://rumus-soal.blogspot.com

Aljabar

PEMFAKTORAN ALJABAR

Di kelas VII kalian telah mempelajari materi mengenai KPK dan FPB. Pada materi tersebut kalian telah mempelajari cara menentukan kelipatan dan faktor dari suatu bilangan. Coba ingat kembali cara menentukan faktor dari suatu bilangan. Ingat kembali bahwa faktorisasi prima dari suatu bilangan adalah perkalian faktor-faktor prima dari bilangan tersebut. Di bagian depan telah kalian pelajari bahwa sifat distributif a(x + y) dapat dinyatakan sebagai berikut: ax + ay = a(x + y)

Dari bentuk di atas, tampak bahwa bentuk penjumlahan dapat dinyatakan sebagai bentuk perkalian jika suku-suku dalam bentuk penjumlahan tersebut memiliki faktor yang sama. Dari bentuk ax + ay = a(x + y), a dan (x + y) merupakan faktor-faktor dari ax + ay. Proses menyatakan bentuk penjumlahan menjadi suatu bentuk perkalian faktor-faktornya disebut pemfaktoran atau faktorisasi.



Pemfaktoran atau faktorisasi bentuk aljabar adalah menyatakan bentuk penjumlahan menjadi suatu bentuk perkalian dari bentuk aljabar tersebut. Sekarang, kalian akan mempelajari faktorisasi dari beberapa bentuk aljabar. Perhatikan uraian berikut:
1. Bentuk ax + ay + az + ... dan ax + bx – cx
Bentuk aljabar yang terdiri atas dua suku atau lebih dan memiliki faktor sekutu dapat difaktorkan dengan menggunakan sifat distributif.
ax + ay + az + ... = a(x + y + z + ...)
ax + bx – cx = x(a + b – c)
2. Bentuk Selisih Dua Kuadrat x2 – y2
Bentuk aljabar yang terdiri atas dua suku dan merupakan selisih dua kuadrat.
Dengan demikian, bentuk selisih dua kuadrat x2 – y2 dapat dinyatakan sebagai berikut:
x2 - y2= (x + y).(x - y)
3. Bentuk x2 + 2xy + y2 dan x2 – 2xy + y2
Untuk memfaktorkan bentuk aljabar x2 + 2xy + y2 dan x2 – 2xy + y2 perhatikan uraian berikut:
x2 + 2xy + y2 = (x + y) (x + y) = (x + y)2
x2 – 2xy + y2 = (x – y) (x – y) = (x – y)2
4. Bentuk ax2 + bx + c dengan a = 1
Langkah-langkah memfaktorkan bentuk aljabar x2 + bx + c dengan c positif sebagai berikut:
– Pecah c menjadi perkalian faktor-faktornya.
– Tentukan pasangan bilangan yang berjumlah b.
Contoh:
(x + 2) (x + 3) = x2 + 3x + 2x + 6 = x2 + 5x + 6 ........... (dihasilkan suku tiga)
Sebaliknya, bentuk suku tiga x2 + 5x + 6 apabila difaktorkan menjadi x2 + 5x + 6 = (x + 2) (x + 3). Perhatikan bahwa bentuk aljabar x2 + 5x + 6 memenuhi bentuk x2 + bx + c.

Berdasarkan pengerjaan di atas, ternyata untuk memfaktorkan bentuk x2 + bx + c dilakukan dengan cara mencari dua bilangan real yang hasil kalinya sama dengan c dan jumlahnya sama dengan b. Misalkan x2 + bx + c sama dengan (x + m) (x + n).
x2 + bx + c = (x + m) (x + n) = x2 + mx + nx + mn = x2 + (m + n)x + mn


sumber : http://rumus-soal.blogspot.com

Rumus Gradien

RUMUS PERSAMAAN GARIS DAN GRADIEN

Persamaan garis lurus dapat ditulis dalam bentuk y = mx + c dengan m dan c suatu konstanta. Persamaan garis yang melalui titik (0, c) dan sejajar garis y = mx adalah y = mx + c. Langkah-langkah menggambar grafik persamaan y = mx atau y = mx + c sebagai berikut:
– Tentukan dua titik yang memenuhi persamaan garis tersebut dengan membuat tabel untuk mencari koordinatnya.
– Gambar dua titik tersebut pada bidang koordinat Cartesius.
– Hubungkan dua titik tersebut, sehingga membentuk garis lurus yang merupakan grafik persamaan yang dicari.


Gradien suatu garis adalah bilangan yang menyatakan kecondongan suatu garis yang merupakan perbandingan antara komponen y dan komponen x. Garis dengan persamaan y = mx memiliki gradien m dan melalui titik (0, 0). Garis dengan persamaan y = mx + c memiliki gradien m dan melalui titik (0, c). Garis dengan persamaan ax + by + c = 0 memiliki gradien (-a/b).

Gradien garis yang melalui titik (x1, y1) dan (x2, y2) adalah (y2-y1)/(x2-x1). Gradien garis yang sejajar sumbu X adalah nol. Gradien garis yang sejajar sumbu Y tidak didefinisikan. Garis-garis yang sejajar memiliki gradien yang sama. Hasil kali gradien dua garis yang saling tegak lurus adalah –1.

Persamaan garis yang melalui titik (x1, y1) dan bergradien m adalah y – y1 = m(x – x1). Persamaan garis yang melalui titik (x1, y1) dan sejajar garis y = mx + c adalah y – y1 = m(x – x1). Persamaan garis yang melalui titik (x1, y1) dan tegak lurus garis y = mx + c adalah y – y1 = (-1/m)(x – x1).

Persamaan garis yang melalui dua titik dapat diselesaikan dengan substitusi ke fungsi linear y = ax + b. Persamaan garis yang melalui titik A(x1, y1) dan B(x2, y2)
adalah (y-y1)/(y2-y1)=(x-x1)/(x2-x1).


sumber : http://rumus-soal.blogspot.com